DOE Bioenergy Technologies Office (BETO) 2021 Project Peer Review

Multi-pronged approach to improving carbon utilization by cyanobacterial cultures

March 23, 2021 Advanced Algal Systems WBS: 1.3.2.410

Wim Vermaas Arizona State University

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Overview

Problem statement: Bubbling cultures or ponds with CO₂-enriched air is very inefficient as most of the CO₂ escapes into the atmosphere

This contributes to cost (CO₂ is \$50-100/tonne at scale) as well as to greenhouse gas emissions

Our approach: Test both physical/physicochemical and biological approaches to enhance carbon utilization, determine which one(s) are best, and then combine those. All are new approaches in the context of scalable microalgal production, so high risk

Where we are in the project:

- Start: October 2018
- Verification complete / start of project: January 2019
- Verification meeting, Go/No-Go at end of BP2: March 2020
- End of project: September 2021

Project Overview

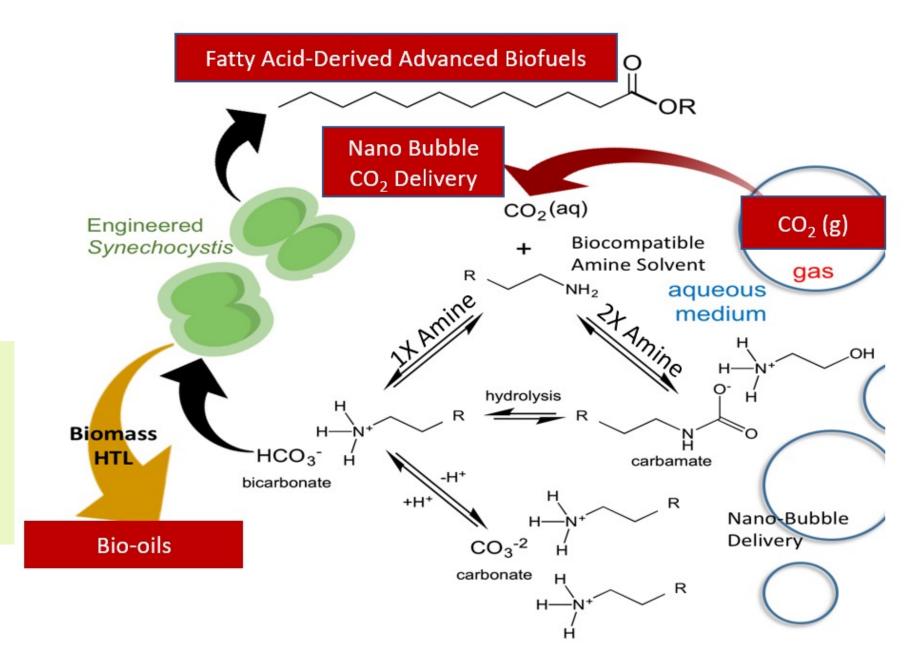
Test both physical/physicochemical and biological approaches to enhance carbon utilization, determine which one(s) are best, and then combine those

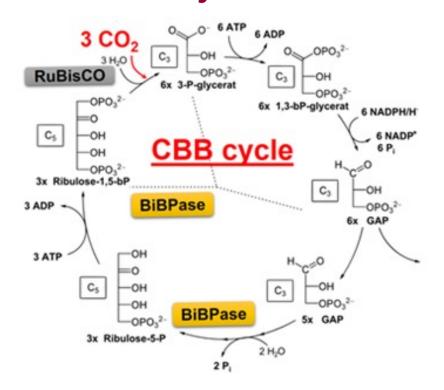
- Task 2. Enhance CO₂ absorption and retention in cyanobacterial culture media
 - CO₂ nanobubbles: greatly increased stability of gaseous CO₂ in the culture medium
 - Amines: react with CO₂ forming carbamates, thus pulling more CO₂ into the medium
- Task 3. Enhance bicarbonate uptake by the cyanobacteria
 - Overexpress bicarbonate transporters from different cyanobacterial strains in our strain
- Task 4. Introduce additional CO₂ fixation and conservation mechanisms in cyanobacteria
 - Overexpress enzymes that appeared to enhance carbon utilization in other studies
 - Minimize CO₂ production by cyanobacteria through pathway engineering
 - Enhance carbon utilization and cell growth with fermentation gas through adaptive laboratory evolution
- Task 5. Demonstrate improved CO₂ uptake efficiency in outdoor conditions
 - Outdoor cultivation trials at AzCATI
- Task 6. Techno-economic and life cycle assessments, and dynamic growth modeling
 - Assess economic viability and environmental impact of the system, and determine productivity estimates for different locations

1 - Management

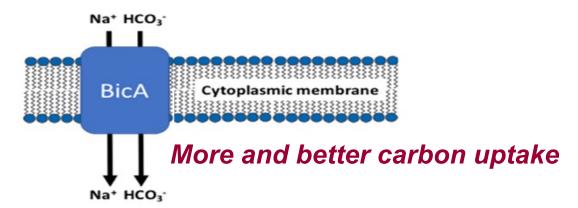
Team:

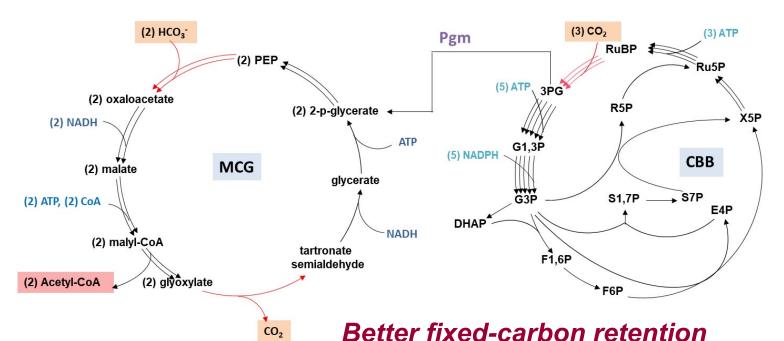
- Wim Vermaas (PI; ASU, Life Sciences)
 - Genetic modification of cyanobacteria; overall project oversight
- Al Darzins (Co-PI; Nano Gas)
 - CO₂ nanobubble development for cyanobacterial growth improvement
- Anna Keilty (ASU, Life Sciences)
 - Project coordinator; administration and financials
- John McGowen and Taylor Weiss (Co-Pls; ASU, AzCATI)
 - Outdoor cultivation
- David Nielsen (Co-PI; ASU, Chemical Engineering)
 - Improved CO₂ mass transfer with amines; bicarbonate transporters
- Jason Quinn (Co-PI; CSU, Mechanical Engineering)
 - Techno-economic analysis and life cycle assessments
- Xuan Wang (Co-PI; ASU, Life Sciences)
 - Metabolic engineering; adaptive laboratory evolution
- Two postdocs, three graduate students, several research staff members
- Biweekly two-hour meetings of the entire team to share results, discuss progress, risk and issues, and develop plans and mitigation strategies




2 – Approach

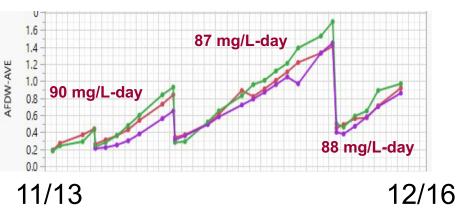
1. Improve CO₂ mass transfer into liquid using biocompatible amine solvents and nanobubbles


Integrate with TEA/LCA to determine the economic feasibility and impact on emissions



2. Improve bicarbonate uptake and carbon fixation in cyanobacteria

2 - Approach



Better CO₂ fixation and storage

Integrate with TEA/LCA to determine the economic feasibility and impact on emissions

No decarboxylation to make acetyl-CoA

3. Grow best strains in 50-L PBRs at AzCATI

2 – Approach

Go/No-Go decision points:

Early 2020 (month 18): Demonstrate mechanisms resulting in 25% increase in CO₂ utilization efficiency by the biofuel-producing baseline strain under laboratory conditions. ✓

End of project (month 36): Isolate a biofuel-producing Synechocystis strain with at least a 15% increase in growth rate as measured by optical density at 730 nm at laboratory scale under conditions (light/dark cycling, temperature profile) relevant to outdoor culturing and supplemented with CO₂ from at least one industrial source

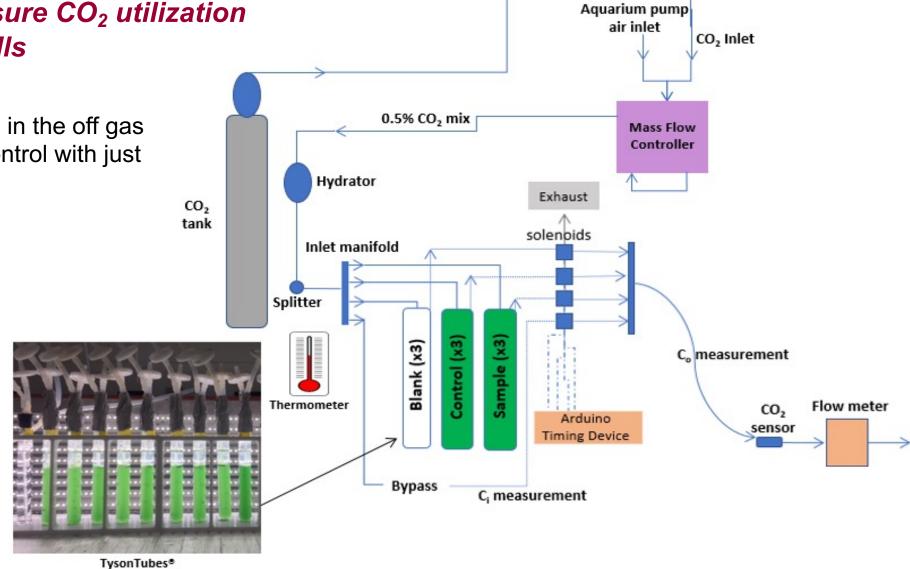
A challenge we encountered:

CO₂ utilization efficiency is hard to measure exactly:

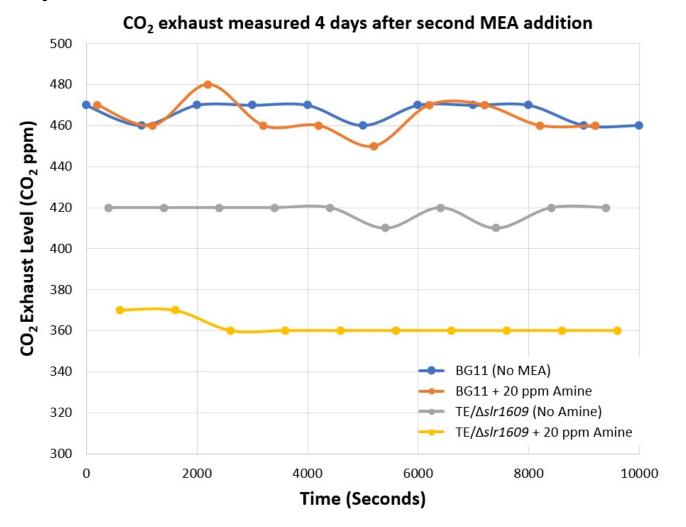
We measure CO_2 in outlet gas from "blank" medium (no cyanobacteria) and from cultures; the difference between the two is CO_2 utilized. There is error in both measurements as the output from CO_2 probes is not very stable; distinguishing small gains (like 10%) in CO_2 utilization efficiency is difficult.

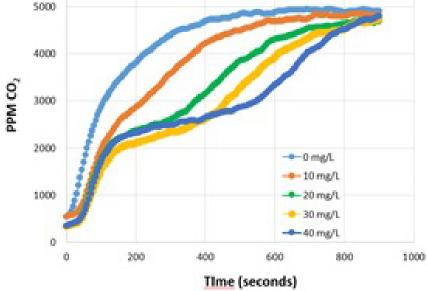
3 – Impact

- CO₂ utilization efficiency is an understudied field, yet it is key to economic considerations as well
 as to greenhouse gas removal
- In this project we test which approaches aid in improving CO₂ utilization efficiency:
 - Amines
 - CO₂ nanobubbles
 - Bicarbonate transporters in the cell
 - More CO₂ fixation in cells
 - Less decarboxylation in cells
 - Adaptive evolution using fermentation gas
 - Verify with 50-L PBRs at AzCATI
 - Use TEA/LCA to determine economics and greenhouse gas emission impacts
- Strategies that work will help CO₂ utilization in other projects: results are unlikely to be strainspecific
- Improving CO₂ utilization efficiency helps reaching BETO's 2030 \$2.50/gasoline gal equivalent goal as well as BETO's 2030 areal productivity target of 25 g m⁻² day⁻¹



General setup to measure CO₂ utilization by cells

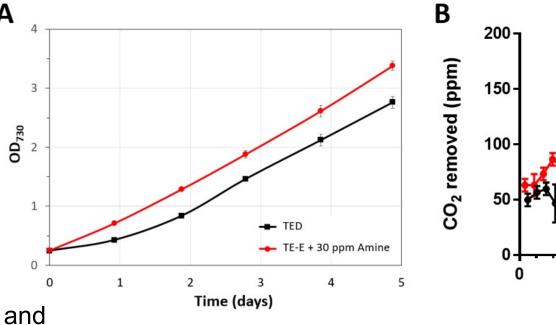

Compare how much CO₂ is in the off gas from a culture vs. from a control with just medium



varies based on experiment, typically nine tubes total; multiple inlet manifolds can be connected to accommodate more sample tubes

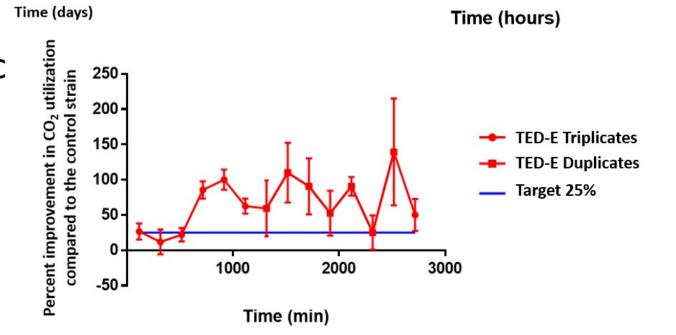
Task 2: CO₂ uptake in the presence of an amine in the culture

Early data:



 CO_2 breakthrough curves with BG-11 medium with 0-40 ppm of an amine. The area above each curve represents the CO_2 retained in the medium.

Much less CO₂ is in the exhaust gas stream of cultures in the presence of amine, indicating that more CO₂ is taken up from the gas stream


Go/No-Go between BP2 and BP3:

Demonstrate mechanisms resulting in 25% increase in CO₂ utilization efficiency by the biofuel-producing baseline strain under laboratory conditions.

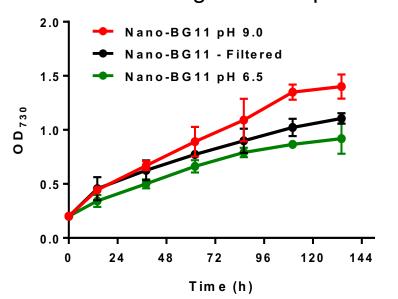
In continuous light CO₂ removal and culture growth were greatly improved by the amine and in a spontaneously derived strain with better amine tolerance. CO₂ utilization was improved by much more than 25% in the first 2.5 days.

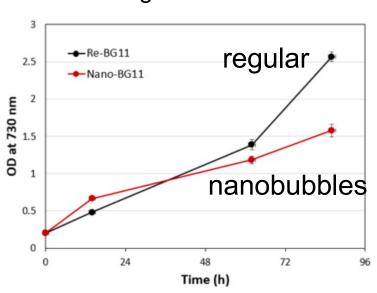
The amine advantage is more difficult to prove in diurnal light and temperature conditions, but we should have the answer after more replicates.

24

TED

72

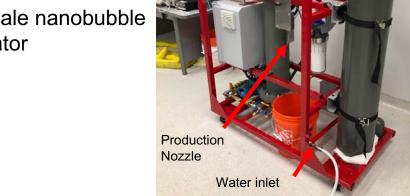

TED-E Triplicates


TED-E Duplicates

120

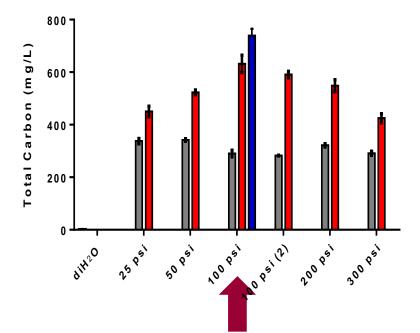
Task 2: Nanobubbles

- A lab-scale nanobubble generator was fabricated
- Optimal operating pressure for CO₂ nanobubble production is 100 psi – saves on energy costs
- More carbon retained under alkaline conditions
- Typical CO₂ nanobubble size range: 50-200 nm
- Nanobubble concentration: about 108 per mL
- Cyanobacterial growth with nanobubbles exceeds that in normal growth conditions for the first day, but not after that
- Nanobubble generation procedures are now being modified

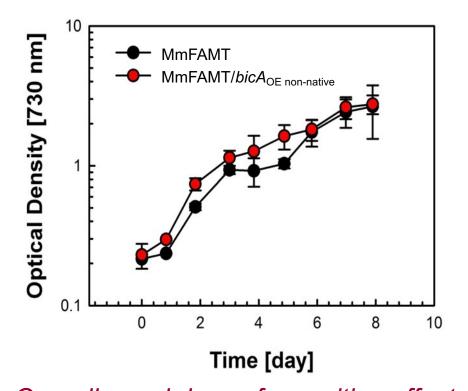

Lab-scale nanobubble generator

Nano-H₂O + PO₄ buffer (pH 6.5)

Nano-H₂O + PO₄ buffer (pH 8.5)

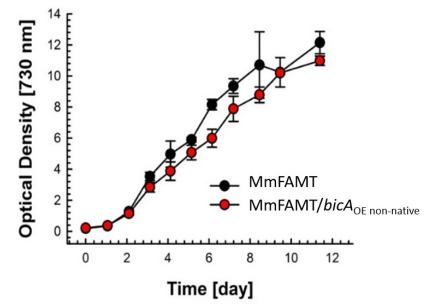

diH₂O

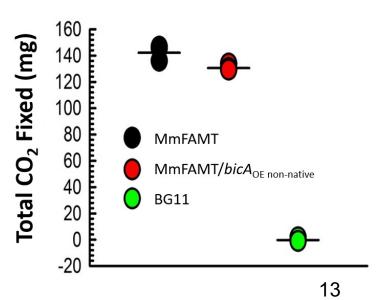
Nano-H₂O

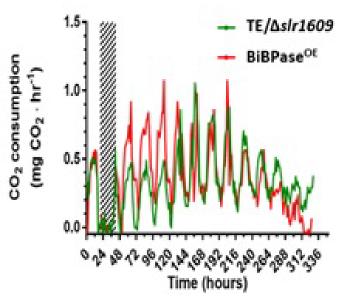


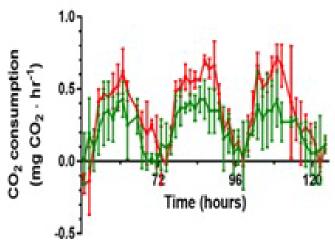
Pressure vessel

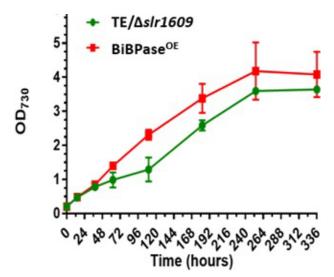
CO₂ cylinder

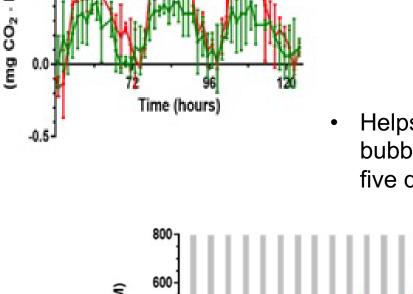


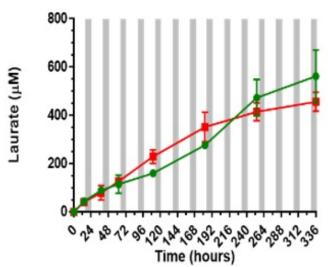

Task 3: Add bicarbonate transporters to strain

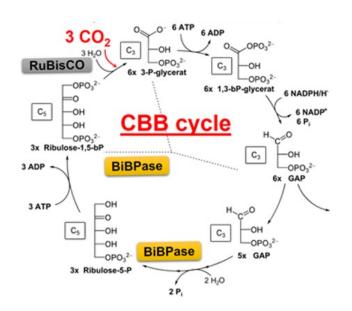

Overall, much less of a positive effect than sometimes is seen in the literature. Under ambient CO₂ conditions under continuous illumination at 150 µmol photons m⁻² s⁻¹ sometimes a small improvement is seen...

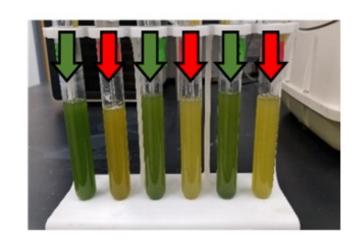

But this positive effect evaporates under standard diurnal conditions (14 hours 150 µmol photons m⁻² s⁻¹ light at 35 °C followed by 10 hours of darkness at 20 °C). Error bars represent one standard deviation of biological triplicate.

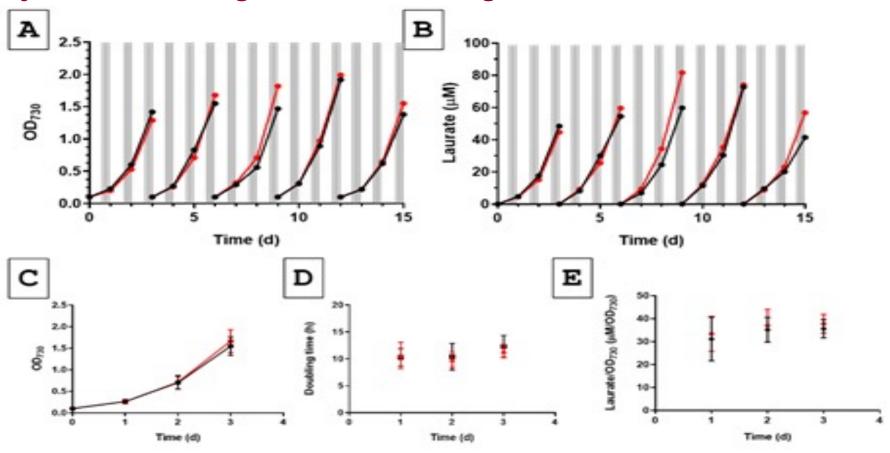




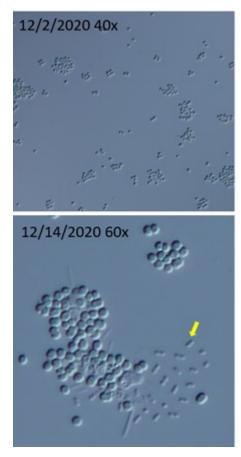

Task 4. Overexpress BiBPase



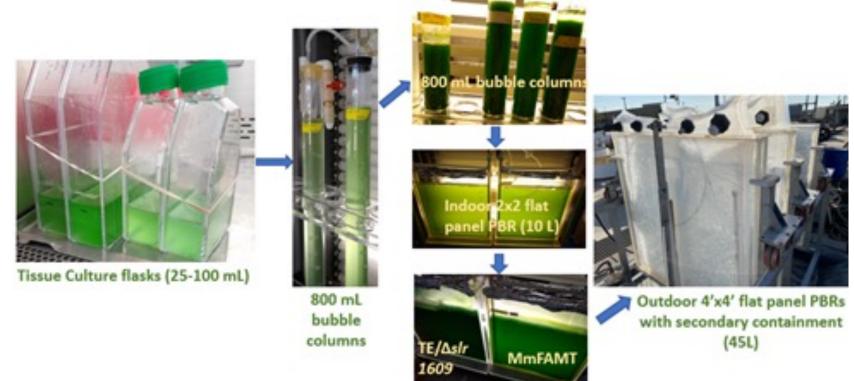


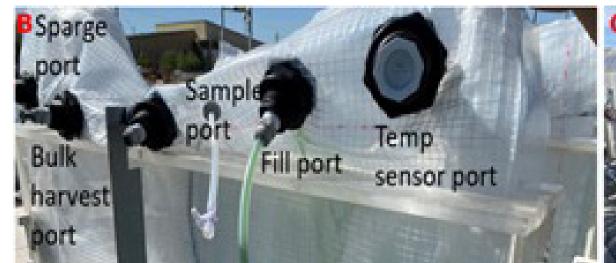

Helps in CO₂ consumption and growth when bubbled with ambient air, at least in the first five days; requires further testing to confirm

Task 4. Adaptive laboratory evolution using fermentation off-gas


This improved BiBPase overexpression strain is used for adaptive laboratory evolution to determine if a fastergrowing strain can be evolved. The strain is grown under standard diurnal conditions, and CO₂ is provided in the form of fermentation off gas from a brewery.

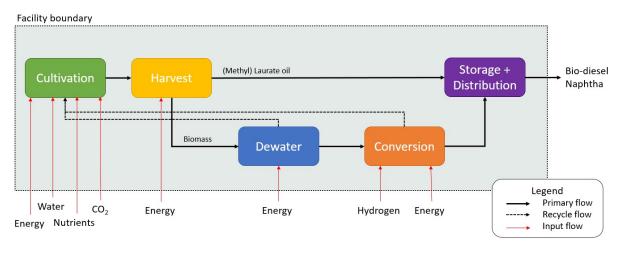
Thus far no significant changes yet, but the experiment only has been going on for a month or so.


End of Project Goal: Isolate a biofuel-producing Synechocystis strain with at least a 15% increase in growth rate as measured by optical density at 730 nm at laboratory scale under conditions (light/dark cycling, temperature profile) relevant to outdoor culturing and supplemented with CO₂ from at least one industrial source


Task 5: Grow strains outdoors at AzCATI and evaluate CO₂ utilization

Reasonable productivity was observed (see approach slides)

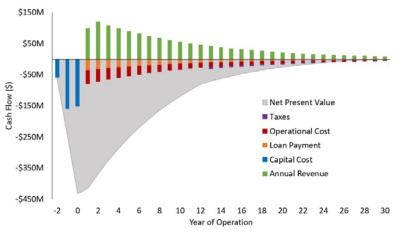
4 – Progress and Outcomes



Task 6. TEA and LCA methods

1. Process Modeling

Mass and energetic demands are captured for every unit and sub-unit process, such as hydrothermal liquefaction conversion or carbon dioxide delivery.



4. First-order growth modeling

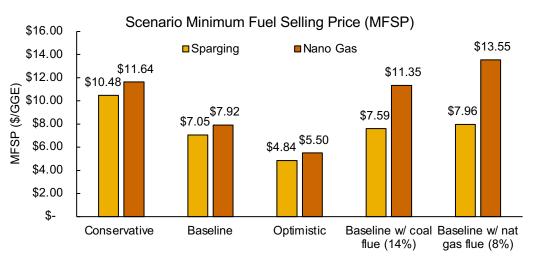
Incoming photosynthetically active radiation (PAR) is correlated with growth, to determine how much fixed carbon can be expected from a given amount of radiation. Outdoor growth data from the Fall 2020 run is now being processed.

2a. Techno-economic analysis (TEA)

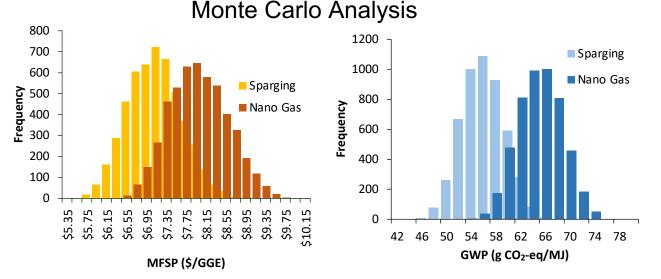
Process model data are super-imposed with financial data and evaluated on minimum fuel selling price with a discounted cash flow rate of return (DCFROR).

2b. Life cycle assessment (LCA)

Environmental burdens related to energy use and feedstocks are accounted for using OpenLCA and Ecoinvent data.

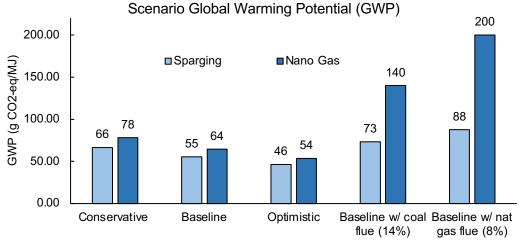

3. Monte Carlo Assessment (MCA)

A method of dealing with uncertainty, MCA replaces static inputs with stochastic probability curves using @Risk software and VBA for data processing.


Task 6, selected results

4 - Progress and Outcomes

Techno-economic analysis



TEA results using sparging and Nano Gas carbon delivery systems

Preliminary MCA results; see above for abbreviations

Life cycle assessment

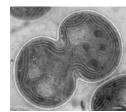
LCA results using sparging and Nano Gas carbon delivery systems

The scenario results include the conservative, baseline and optimistic scenarios using sparged and nanobubbled pure CO_2 , as well as the two flue gas scenarios (coal and natural gas). The MCA results only include the pure CO_2 scenarios with input distributions spanning the conservative, baseline and optimistic range.

Summary

A number of approaches to enhance CO₂ utilization by biofuel (laurate/methyl laurate)-producing cyanobacteria were investigated in parallel. We knew in advance that some were going to work and some might not, and the challenge was to figure out which of the approaches enhanced CO₂ utilization.

The ones that work best:


- Addition of amines was particularly effective in enhancing CO₂ utilization by cyanobacteria, enhancing carbon utilization by well over 25% under some conditions
- Overexpression of BiBPase enhances CO₂ utilization at non-saturating CO₂ levels
- TEA and LCA methods

Promising and in progress:

- Nanobubble optimization
- Adaptive laboratory evolution to further enhance growth using fermentation off gas
- Outdoor growth: They grow well even in winter, and can be stably maintained for >1 month

Overall, the best methods to enhance CO₂ utilization efficiency are being identified, and will contribute to yield and cost goals of BETO's MYPP

Quad Chart Overview

Timeline

Project start date: October 1, 2018

Project end date: September 30, 2021

	FY20 Costed	Total Award
DOE Funding	(10/01/2019 – 9/30/2020) \$799,911	(negotiated total federal share) \$2,500,000
Project Cost Share	\$217,085	\$626,580

Project Partners

- Colorado State University
- Nano Gas Technologies

Project Goal

Determine which physicochemical and biological mechanisms are most effective to enhance carbon utilization by cyanobacteria

End of Project Milestone

Isolate a biofuel-producing *Synechocystis* strain with at least a 15% increase in growth rate as measured by optical density at 730 nm at laboratory scale under conditions (light/dark cycling, temperature profile) relevant to outdoor culturing and supplemented with CO₂ from at least one industrial source

Other relevant milestones:

Identify conditions and biofuel-producing strain improving CO_2 utilization efficiency by $\geq 50\%$ compared to biofuel-producing baseline strain at lab scale under conditions (light/dark cycling, temperature) relevant to outdoor culturing Complete an outdoor cultivation trial in a relevant outdoor situation and establish performance capability at larger scale.

Assess economic viability of the proposed process with future recommendations

Funding Mechanism

DE-FOA-0001908 (Efficient Carbon Utilization in Algal Systems)

Additional Slides

Responses to Previous Reviewers' Comments

- The project was not presented in an oral presentation two years ago as it had just started
- Change in emphasis based on a Go/No-Go Review by the verification team in March 2020:
 - Nanobubble work does not need to be included in Task 5 as currently CO₂ nanobubbles are not helping growth sufficiently
- The SOPO was revised accordingly

Publications, Patents, Presentations, Awards, and Commercialization

 No publications resulting from this particular project yet, but a number of poster or student presentations have been given